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Abstract.   The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO (Cloud-Aerosol Lidar and 10 

Infrared Pathfinder Satellite Observations) satellite has been observing polar stratospheric clouds (PSCs) from mid-June 2006 

until the present. The spaceborne lidar profiles PSCs with unprecedented spatial (5-km horizontal x 180-m vertical) resolution 

and its dual-polarization capability enables classification of PSCs according to composition.  Nearly coincident Aura 

Microwave Limb Sounder (MLS) measurements of the primary PSC condensables (HNO3 and H2O) provide additional 

constraints on particle composition.  A new CALIOP Version 2 (v2) PSC detection and composition classification algorithm 15 

has been implemented that corrects known deficiencies in previous algorithms and includes additional refinements to improve 

composition discrimination.  Major v2 enhancements include dynamic adjustment of composition boundaries to account for 

effects of denitrification and dehydration, explicit use of measurement uncertainties, addition of composition confidence 

indices, and retrieval of particulate backscatter, which enables simplified estimates of particulate surface area density (SAD) 

and volume density (VD).  The 11+ years of CALIOP PSC observations in each v2 composition class conform to their expected 20 

thermodynamic existence regimes, which is consistent with previous analyses of data from 2006-2011 and underscores the 

robustness of the v2 composition discrimination approach. 

The v2 algorithm has been applied to the CALIOP dataset to produce a PSC reference data record spanning the 2006-2017 

time period, which is the foundation for a new comprehensive, high resolution climatology of PSC occurrence and composition 

for both the Antarctic and Arctic.  Time series of daily-averaged, vortex-wide PSC areal coverage versus altitude illustrate that 25 

Antarctic PSC seasons are similar from year to year, with about 25% relative standard deviation in Antarctic PSC spatial 

volume at the peak of the season in July and August.  Multi-year average, monthly zonal mean cross sections depict the 

climatological patterns of Antarctic PSC occurrence in latitude/altitude and also equivalent latitude/potential temperature 

coordinate systems, with the latter system better capturing the microphysical processes controlling PSC existence.  Polar maps 

of the multi-year mean geographical patterns in PSC occurrence frequency show a climatological maximum between 30 

longitudes 90oW and 0o, which is the preferential region for forcing by orography and upper tropospheric anticyclones.  The 
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climatological mean distributions of particulate SAD and VD also show maxima in this region due to the large enhancements 

from the frequent ice clouds. 

Stronger wave activity in the Northern Hemisphere leads to a more disturbed Arctic polar vortex, whose evolution and lifetime 

vary significantly from year to year.  Accordingly, Arctic PSC areal coverage is distinct from year to year with no “typical” 

year, and the relative standard deviation in Arctic PSC spatial volume is > 100% throughout most of season.  When PSCs are 5 

present in the Arctic, they most likely occur between longitudes 60oW and 90oE, which is consistent with the preferential 

location of the Arctic vortex.   

Comparison of the CALIOP Antarctic PSC record, appropriately degraded in resolution and subsampled by time-varying 

latitude, with data from 1979-1989 collected by the spaceborne solar occultation instrument Stratospheric Aerosol 

Measurement (SAM) II shows good consistency in column integrated Antarctic PSC occurrence frequency, indicating that 10 

there has been no obvious long-term trend.  

1 Introduction 

The overall role of polar stratospheric clouds (PSCs) in the depletion of stratospheric ozone is well established (Solomon, 

1999). Heterogeneous reactions on PSC particles convert the stable chlorine reservoirs HCl and ClONO2 to chlorine radicals 

that destroy ozone catalytically (Solomon et al., 1986; Crutzen et al., 1992; Solomon et al., 1999).  Rates of these reactions 15 

depend on particle surface area density (SAD) and composition, which can include binary (H2SO4/H2O) or ternary 

(HNO3/H2SO4/H2O, or STS) liquid droplets; solid nitric acid trihydrate (NAT) particles; and H2O ice particles (Lowe and 

MacKenzie, 2008).  PSCs also impact polar ozone chemistry by temporarily removing gas-phase HNO3 from the polar 

stratosphere through uptake by the particles during formation and growth (denoxification).  In addition, sedimentation of large 

NAT particles (Molleker et al., 2014) can permanently remove HNO3 (denitrification), which prolongs ozone depletion by 20 

delaying reformation of the stable chlorine reservoirs. A substantial recovery of the ozone layer is expected by the middle of 

this century with reduced global production of ozone depleting substances in accordance with the Montreal Protocol and 

subsequent amendments and adjustments (WMO, 2015).  But as climate changes, leading to a colder and perhaps wetter 

stratosphere and upper troposphere (e.g., Shindell, 2001), reliable model predictions of recovery of the Antarctic ozone hole 

and of potentially more severe ozone depletion in the Arctic are challenging because many global models use simple 25 

parameterizations that do not accurately represent PSC processes (e.g. Peter and Grooß, 2012; Morgenstern et al., 2017).   

Fortunately, our knowledge of the temporal and geographic distribution of PSCs and their particle composition has expanded 

greatly in the 21st century with the advent of three satellite instruments with extensive polar measurement coverage: the 

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (2002-2012), the Microwave Limb Sounder 

(MLS) on Aura (2004-present), and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on CALIPSO (Cloud-30 

Aerosol Lidar and Infrared Pathfinder Satellite Observations, 2006-present).  CALIPSO flies in a 98° inclination orbit at an 
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altitude of 705 km as part of the NASA A-train satellite constellation (Stephens et al., 2002), along with the Aqua, Aura, 

CloudSat, and Orbiting Carbon Observatory-2 (OCO-2) satellites.  Although PSC studies are not a primary mission objective, 

CALIPSO is an ideal platform for studying polar processes, collecting data along 14-15 orbits per day with coverage from 

82° S to 82o N latitude on each orbit.  CALIOP data collection began in mid-June 2006 and continues at the time of this writing. 

The foundation for PSC detection and composition classification using CALIOP data was laid out in papers by Pitts et al. 5 

(2007) and Pitts et al. (2009), with additional refinements appearing in Pitts et al. (2011) and Pitts et al. (2013).  We will refer 

to these papers herein as P07, P09, P11, and P13, respectively, and refer to the P07/P09/P11/P13 algorithm sequence as Version 

1.0 (v1).  Data products from v1 have compared favorably with PSC observations from MIPAS (Höpfner et al., 2009), ground-

based lidar (Achtert and Tesche, 2012), and Aura MLS (P13; Lambert et al, 2016).  However, several known deficiencies in 

the v1 algorithm were highlighted in P13, one being that the effects of measurement noise on the inferred PSC composition 10 

were not explicitly considered.  In addition, the boundary separating NAT and ice PSCs in the CALIOP optical measurement 

space needed to be adjusted in the event of denitrification and dehydration, a shortcoming that was also noted in comparisons 

of v1 products with model simulations by Zhu et al. (2017). 

In the present paper, we introduce the CALIOP Version 2.0 (v2) PSC algorithm, which addresses these known deficiencies 

and includes additional refinements to increase the robustness of the inferred PSC composition.  These refinements include: 15 

(1) correction for crosstalk between the CALIOP parallel and perpendicular polarization channels; (2) estimation of random 

uncertainties in the measured and derived optical quantities using the noise-scale factor (NSF) approach (Liu et al., 2006); (3) 

adoption of less conservative PSC detection thresholds to better match features detected by the naked eye in CALIOP orbital 

curtain images; (4) redefined PSC composition classes with indices denoting statistical confidence in the inferred composition; 

and (5) retrieval of 532-nm particulate backscatter, which corrects the CALIOP measurements for attenuation by overlying 20 

particle layers and enables simplified estimates of the bulk particle microphysical quantities SAD and volume density (VD) to 

facilitate comparisons with PSC measurements by other instruments as well as with theoretical model representations of 

heterogeneous chemical processes.  We show several examples that illustrate the top-level differences between v1 and v2 data 

products.  We then present a state-of-the-art PSC reference data record and climatology constructed by applying the v2 

algorithm to the 11+ year CALIOP spaceborne lidar dataset spanning 2006-2017.  This work is part of a larger effort to compile 25 

new reference PSC climatologies based on the contemporary CALIOP, MIPAS, and MLS datasets that is being performed 

under the auspices of the Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Polar Stratospheric Cloud 

initiative (PSCi: http://www.sparc-climate.org/activities/polar-stratospheric-clouds/).  A separate MIPAS PSC climatology has 

been compiled by Spang et al. (2017). These new climatologies represent the first observational-based records of PSC 

occurrence, composition, and particle characteristics on vortex-wide spatial scales covering decadal time scales and are a 30 

valuable resource for testing and validating current and future global models.    
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In Section 2 we describe the datasets utilized in the CALIOP v2 PSC algorithm and in constructing the CALIOP PSC 

climatology.  In Section 3 we describe in detail the modifications implemented in the v2 algorithm, illustrate the top-level 

differences between v1 and v2, and show that the v2 PSC composition classes conform well to their expected temperature 

existence regimes.  In Section 4 we present the CALIOP v2 PSC reference data record and climatology in terms of overall and 

composition-specific areal coverage and occurrence frequency.  Multi-year average, monthly zonal mean cross sections in 5 

both latitude/altitude and equivalent latitude/potential temperature coordinate systems are shown along with polar maps that 

illustrate the detailed temporal and spatial patterns in PSC occurrence and composition.  In Section 5 we show examples of the 

SAD climatology, and in Section 6 we investigate the possibility of long-term trends in PSC occurrence by comparing the 

CALIOP data record to the historical (1978-1989) Stratospheric Aerosol Measurement (SAM) II solar occultation PSC 

occurrence record.  Finally, in Section 7 we summarize the key findings and discuss the results.  10 

2 Datasets 

The A-Train satellite constellation offers a unique opportunity for PSC analyses through the combination of CALIOP data and 

nearly coincident Aura MLS measurements of the primary PSC condensable vapors, HNO3 and H2O.  Additional context is 

provided by ancillary meteorological information from the Modern Era Retrospective-Analysis for Research (MERRA-2) 

reanalysis product (Gelaro et al., 2017) and the Aura MLS Derived Meteorological Products (DMPs) (Manney et al., 2007; 15 

Manney et al., 2011a).  A brief description of these datasets is provided below. 

2.1 CALIOP 

CALIOP, the primary instrument on the CALIPSO satellite, is a dual wavelength polarization-sensitive lidar that provides high 

vertical resolution profiles of backscatter coefficients at 532 and 1064 nm (Winker et al., 2009).  Figure 1 illustrates the typical 

CALIPSO orbital coverage for a single day (17 July 2008) over the Antarctic polar region.  A curtain of CALIOP 532-nm total 20 

attenuated backscatter coefficient measurements along a single orbit from this day is shown in Figure 2 and illustrates the 

unique capability of the CALIOP spaceborne lidar to probe clouds and aerosols at very high spatial resolution. Although not 

specifically designed for stratospheric applications, PSCs generally produce detectable enhancements in CALIOP backscatter 

profiles as can be seen at altitudes above ~12 km along the orbit curtain in Fig. 2.  The CALIOP measurements of 532-nm 

perpendicular backscatter coefficient provide additional information on particle shape, from which PSC composition can be 25 

inferred.  The v2 CALIOP PSC data products are derived from night-time-only CALIOP v4.10 Level 1B 532-nm parallel and 

perpendicular backscatter coefficient measurements; daytime measurements contain elevated background noise due to 

scattered sunlight, which greatly inhibits the detection of PSCs.  Ancillary meteorological data from MERRA-2, including 

temperature, pressure, and ozone number density at the CALIOP measurement locations are included in the CALIOP v4.10 

Level 1B data products and utilized in the PSC algorithm as described in Section 3.  Further details on the CALIPSO v4.10 30 

Level 1 data processing and calibration approach can be found in Kar et al. (2018). 
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2.2 Aura MLS 

The Aura satellite flies in formation with CALIPSO in the A-train satellite constellation providing a nearly coincident dataset 

of gas-phase HNO3 and H2O from the MLS instrument with spatial and temporal differences between the CALIOP and MLS 

measurements less than 10 km and 30 s after a repositioning of the Aura satellite in April 2008 and about 200 km and 7-8 min. 

prior to 2008 (see Lambert et al., 2012). The Aura MLS detects thermal microwave emission from the Earth’s limb along the 5 

line-of-sight in the forward direction of the Aura spacecraft flight track (Waters et al., 2006). Vertical scans are made from the 

Earth's surface up to a 90 km tangent height every 24.7 s,  providing a total of 3500 vertical profiles per day with a horizontal 

along track spacing of 1.5 degrees (~165 km) and nearly global latitude coverage from 82oS–82oN. The limb radiance 

measurements are inverted using a 2-D optimal estimation retrieval (Livesey et al., 2006) to yield atmospheric profiles of 

temperature and gas-phase constituents in the vertical range 8–90 km.  Herein we use the MLS version 4.2 products (Livesey 10 

et al., 2017).  For the vertical range relevant for PSCs, the MLS version 4.2 measurements have typical single-profile precisions 

(accuracies) of 4-15% (4-7%) for H2O (Read et al. 2007; Lambert et al., 2007) and 0.6 ppbv (1-2 ppbv) for HNO3 (Santee et 

al., 2007). Vertical and horizontal along-track resolutions are 3.1-3.5 km and 180-290 km for H2O, and 3.5-5.5 km and 400-

550 km for HNO3. 

To better facilitate the utilization of the MLS data in the PSC analyses, the MLS gas-phase HNO3 and H2O measurements are 15 

interpolated to the CALIOP PSC orbit grid using a weighted average of the two nearest MLS profiles. In addition, ancillary 

meteorological parameters from the Aura MLS v2.0 DMPs, such as dynamic tropopause height, equivalent latitude, and vortex 

edge location are also mapped onto the CALIOP PSC orbit grid.  The MLS HNO3 and H2O, and meteorological parameters 

from the DMPs are included in the archived v2 CALIOP PSC data product files.   

3 CALIOP Version 2.0 PSC Algorithm 20 

3.1 Data Pre-processing 

Data pre-processing generally follows the procedure discussed in detail in P07 and P09, but with additional steps to correct for 

the small amount of crosstalk between the two CALIOP polarization channels and to estimate uncertainties in the CALIOP 

measurements.  The initial step is to ingest nighttime-only profiles of CALIOP V4.10 Lidar Level 1B 532-nm attenuated 

parallel (β’par) and perpendicular (β’perp) backscatter coefficients over the altitude range 8.4-30 km.  The data are smoothed to 25 

a uniform 5-km horizontal (along the orbit track) by 180-m vertical resolution grid to remove the altitude dependence of the 

resolution of the downlinked CALIOP data (Winker et al., 2007).  The data are then corrected for molecular and ozone 

attenuation using the MERRA-2 molecular and ozone number density profiles reported in the CALIOP V4.10 Level 1B data 

product files.  The MERRA-2 molecular number density is also used in the theoretical relationship from Hostetler et al. (2006) 

to calculate molecular backscatter βmol, which is then used to calculate the 532-nm attenuated scattering ratio R’532 = 30 

(β’par+β’perp) / βmol. 
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3.1.1 Crosstalk Correction 

The CALIOP backscatter signal is separated into parallel and perpendicular components by a polarization beam splitter in the 

receiver subsystem (Hunt et al., 2009).  With an ideal beam splitter, the measured molecular depolarization ratio (mol,meas) 

would equal the theoretical value of 0.00366 at the ~40-pm bandwidth of the CALIOP optical filter (Cairo et al. 1999; Hostetler 

et al., 2006).  The difference between the measured and theoretical molecular depolarization ratios indicates the level of 5 

crosstalk (CT) between the two polarization channels.  We assume for simplicity that a fraction CT of the received parallel 

signal is reflected into the perpendicular channel and that the remainder (1-CT) of the received parallel signal is transmitted 

into the parallel detector.  With this assumption and some algebraic manipulation, it can be shown that  

CT = (mol,meas – 0.00366) / (1 + mol,meas) 

The crosstalk-corrected attenuated backscatter signals can then be derived from the measured signals as follows: 10 

β’par = β’par,meas /(1-CT)    and    β’perp = β’perp,meas – β’par (CT)/(1-CT)   

Based on daily values of mol,meas from mid-June 2006 until March 2015, we found that CT has been less than 0.005 over almost 

the entire CALIPSO mission.  The only exceptions were the 2008 Antarctic and 2008-09 Arctic winters, when CT ranged from 

0.006-0.007.  Since the CT correction is so small, we use PSC seasonal average CT values for simplicity in our algorithm.  

The value of CT since March 2015 is assumed to be equal to the 2014-15 Arctic winter average value of 0.0025. 15 

3.1.2 Random Measurement Uncertainties 

Random uncertainties in β’par [uncpar] and β’perp [uncperp] due to shot noise are computed using the noise scale factor (NSF) 

approach introduced by Liu et al. (2006) and described in detail for the CALIOP system by Hostetler et al. (2006).  The 

uncertainties are scaled by the inverse square root of the product of: the number of 15-m vertical bins being averaged, which 

is 12 in the case of our fixed 180-m vertical resolution, and the number of 1/3-km horizontal resolution laser shots being 20 

averaged, which ranges from 15 to 405 in our successive horizontal averaging scheme.  Relative random uncertainty in R’532 

[uncR/R’532] is calculated as the square root of the sum of squares of the relative random uncertainties in β’par [uncpar/β’par] and 

β’perp [uncperp/β’perp] plus an assumed 3% relative uncertainty in βmol (Hostetler et al., 2006). The basic random uncertainties 

are propagated through the calculation of other optical quantities, e.g. particulate depolarization ratio (p), to estimate their 

uncertainties as well.  25 

3.2 PSC Detection 

Detection of PSCs in the v2 algorithm generally follows the approach of v1 in that PSCs are detected as statistical outliers in 

either β’perp or R’532 relative to the background stratospheric aerosol population.  We also use successive horizontal averaging 

(5, 15, 45, and 135 km) to ensure that strongly scattering PSCs (e.g., fully developed STS and ice) are found at the finest 
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possible spatial resolution while also enabling the detection of more tenuous PSCs (e.g., low number density liquid-NAT 

mixtures) through additional averaging.  PSC features found at finer spatial resolution are masked out of the profiles of β’perp 

and R’532 that undergo additional averaging.  Successive averaging minimizes optical aliasing that can result from grouping 

fine-resolution pixels having vastly different optical properties into a single coarser-resolution average. 

Visual comparison of many CALIOP v1 orbital composition images (e.g., Fig. 13 of P11) with corresponding images of β’perp 5 

and R’532 indicated that the PSC statistical thresholds used in the v1 algorithm were too conservative, so we have made 

appropriate adjustments in v2.  The thresholds for the background aerosol - assumed to be those data at MERRA-2 temperatures 

above 200 K - are now defined as the daily median plus one median absolute deviation of β’perp and R’532.  These are computed 

in overlapping 100 K-thick potential temperature () layers over the range from  = 250-750 K.  The region of the South 

Atlantic Anomaly, defined here as a wedge between longitudes 60°W and 45°E, is excluded from the background aerosol 10 

threshold calculations due to excessive noise in the CALIOP 532-nm data in this region (Hunt et al., 2009).  Then for a 

candidate CALIOP data point to be identified as a PSC, its value of β’perp (or R’532) must exceed the background aerosol 

threshold by at least uncperp (or uncR).  We also impose a spatial coherence test that requires that more than 11 of the points in 

a 5-point horizontal by 3-point vertical box centered on the candidate feature exceed the current PSC detection threshold or to 

have been identified as a PSC at a previous (finer) averaging scale.  This revised approach does a better job overall of capturing 15 

PSC clusters identified by the naked eye in CALIOP orbital images while continuing to eliminate false PSC identifications 

stemming from positive noise spikes in the data.  Spot checks of the v2 Antarctic PSC database from early May - when no 

PSCs observations are expected - indicate that the v2 false positive rate is much less than 0.01%. 

3.3 PSC Composition Classification 

PSC composition classification is based on comparing CALIOP data with temperature-dependent theoretical optical 20 

calculations for non-equilibrium mixtures of liquid (binary H2SO4-H2O or STS) droplets and NAT or ice particles.  To illustrate 

the differences between the v2 and v1 algorithms, we show a more extensive set of theoretical results for 50 hPa atmospheric 

pressure, 10 ppbv HNO3, and 5 ppmv H2O.  For these conditions, the NAT equilibrium temperature TNAT  195.7 K (Hanson 

and Mauersberger, 1988); TSTS, the temperature at which liquid particle volume starts to increase markedly  192 K (Carslaw 

et al., 1995); and the frost point temperature Tice  188.5 K (Murphy and Koop, 2005).  The total particle number density (Ntotal) 25 

is fixed at 10 cm−3, partitioned between liquid droplets (Nliq) and either NAT (NNAT) or ice (Nice) for the various mixtures being 

considered.  The liquid particle size distribution is assumed to be a single-mode lognormal with σ=1.6, whose mode radius is 

calculated as a function of Nliq and the equilibrium condensed liquid particle VD (Carslaw et al., 1995) for temperatures Tice-

3 K < T < 196 K.  We assume that non-equilibrium liquid-NAT mixtures exist at T < TNAT and that non-equilibrium liquid-ice 

mixtures exist at T < Tice and that both NAT and ice particle size distributions are single-mode lognormals with σ=1.38.  We 30 

consider a range of NNAT (Nice) from 0.0001-1.0 cm−3 (0.001-10 cm−3) and a range of volume-equivalent radii (rNAT and rice) 

from 0.25-15 µm.  However, only those combinations of [N, r] with NAT (ice) particle volumes less than or equal to the 
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temperature-dependent equilibrium NAT (ice) volume are physically possible.  For the liquid-NAT mixtures, Nliq = Ntotal – 

NNAT, and the equilibrium liquid particle VD is reduced to account for the condensed HNO3 and H2O in the co-existing NAT 

particles.  For the liquid-ice mixtures, Nliq = Ntotal – Nice, and the equilibrium liquid particle VD is reduced to account for the 

condensed H2O in the co-existing ice particles.  All particle optical properties were calculated using the database of T-matrix 

results compiled by Scarchilli et al. (2005) and based on the original work of Mishchenko and Travis (1998), with fixed 5 

refractive indices of 1.44 + i0.0 for binary H2SO4-H2O and STS, 1.48 + i0.0 for NAT, and 1.31 + i0.0 for ice.  We assumed 

spherical liquid droplets (aspect ratio = 1.0) and assumed both NAT and ice particles to be prolate spheroids with an aspect 

ratio of 0.9, which Engel et al. (2013) showed to produce best agreement with maximum values of p observed by CALIOP. 

Figure 3 shows the theoretical results plotted in the coordinate system of p vs. inverse scattering ratio (1/R532) used in the v1 

algorithm.  In v1, it was assumed implicitly that attenuation of the CALIOP laser beam due to PSC particles themselves was 10 

negligible, i.e. that R’532 and β’perp could be considered equivalent to R532 and βperp for the purpose of composition classification.  

The individual “streaks” of points in Fig. 3 represent physically possible [NNAT, rNAT] or [Nice, rice] combinations, with 

temperature decreasing from upper left to lower right along each streak.  P09 defined fixed p vs. 1/R532 boundaries separating 

the composition classes STS, ice (our abbreviated name for liquid-ice mixtures), and Mix1 and Mix2, the latter denoting liquid-

NAT mixtures with lower and higher NAT number densities/volumes, respectively.  P11 added two additional subclasses: 15 

wave ice, ice PSCs presumably induced by mountain waves, defined conservatively as those with R532 > 50; and Mix2-

enhanced, liquid-NAT mixtures with optical properties (2 < R532 < 5 and p > 0.1) similar to the so-called Type 1a enhanced 

clouds observed downstream of wave ice PSCs during earlier airborne field missions (e.g., Tsias et al., 1999).  P13 changed 

the boundary separating STS from liquid-NAT mixtures and ice to a βperp threshold instead of a fixed value of p; hence that 

boundary is shown as a dashed magenta line in Fig. 3. 20 

Two known deficiencies in the v1 composition classification scheme were pointed out in P13.  Due to uncertainty in the 

CALIOP measurements, the optical space boundaries between PSC composition classes are actually “fuzzy” rather than sharp.  

Thus, toggling between inferred composition classes over small spatial scales may be due to measurement noise rather than a 

true change in composition.  This is especially true in the case of separating liquid-NAT mixtures into the Mix1, Mix2, and 

Mix2-enhanced categories.  P13 also pointed out that the boundary separating ice and liquid-NAT mixtures must be shifted to 25 

larger values of 1/R532 (smaller values of R532) in the event of denitrification and dehydration to avoid ice PSCs being 

misclassified as liquid-NAT mixtures (also noted by Zhu et al., 2017).  To address these deficiencies, we have significantly 

improved the composition classification scheme in v2.  The improvements are discussed below in the context of Figure 4, 

where the theoretical optical results are re-plotted in the coordinate system βperp vs. R532, surrogates for the measured attenuated 

CALIOP quantities β’perp and R’532 used for PSC detection.  As discussed below in Section 3.4, the v2 algorithm also 30 

incorporates a retrieval of 532-nm particulate backscatter, βp, through which β’perp and R’532 are later corrected for attenuation 

due to overlying particulate layers (i.e. the “primes” are removed), allowing for a more robust comparison with the theoretical 

results.  The families of points representing physically possible [NNAT, rNAT] or [Nice, rice] pairs lie at constant βperp in Fig. 4, 
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with temperature again decreasing from left to right along each family of points.  The following points are to be noted in our 

revised algorithm:  

 The former Mix1 and Mix2 classes of liquid-NAT mixtures have been combined into a single class named “NAT 

mixtures” for brevity. 

 The former Mix2-enhanced class has been renamed “enhanced NAT mixtures” and it is now defined as the sub-class of 5 

NAT mixtures with R532 > 2 and βperp > 210-5 km-1sr-1.  This conservative boundary was determined empirically by 

comparing CALIOP Antarctic PSC data to contemporaneous MIPAS observations with and without a belt of NAT clouds 

formed by heterogeneous nucleation on wave ice PSCs over the Antarctic Peninsula (Höpfner et al., 2006).  MIPAS data 

from 2008-05-27/28/30 (M. Höpfner, Karlsruhe Institute of Technology, private communication) showed no evidence of 

these NAT clouds, and about 98% of CALIOP NAT mixture data from those days had R532 ≤ 2 and βperp ≤ 210-5 km-1sr-1.  10 

In contrast, NAT belt clouds were clearly evident in MIPAS data on 2008-05-29 and 2008-06-01/02, and their locations 

were matched extremely well by CALIOP NAT mixtures with R532 > 2 and βperp > 210-5 km-1sr-1.  In theoretical terms, 

CALIOP enhanced NAT mixture points correspond roughly to those NAT mixtures with rNAT < 3 µm and NAT VD > 1.0 

µm3cm-3, which match the MIPAS NAT detection limits (rNAT  < 3 µm and NAT VD > 0.3 µm3cm-3) reasonably well.  

Since our criteria defining enhanced NAT mixtures are conservative, the enhanced NAT mixtures sub-class is not all-15 

inclusive, i.e., it does not capture all NAT mixture PSCs heterogeneously nucleated in wave ice PSCs. 

 The wave ice class remains the same as in P11, i.e. ice PSCs with R532>50. 

 The dashed horizontal line labeled βperp,thresh represents qualitatively the CALIOP statistical threshold for detection of 

PSCs containing non-spherical particles.  In practice, this threshold changes with horizontal averaging scale and differs 

from point to point due to its dependency on uncperp.  Each data point is assigned a non-spherical particle confidence index 20 

CINS = (βperp - uncperp) / uncperp.  Points with CINS > 1 are presumed to be PSCs containing non-spherical particles. 

 The dashed magenta vertical line labeled Rthresh represents qualitatively the CALIOP statistical threshold for detection of 

liquid PSCs.  In practice, Rthresh also changes with horizontal averaging scale and differs from point to point due to its 

dependency on uncR.  Data points classified as STS are those with CINS ≤ 1, but with R532 > Rthresh.  Each is assigned an 

STS confidence index CISTS = (R532 – uncR) / uncR; CISTS > 1.  Points in the grey box at the lower left fall below both 25 

CALIOP PSC detection thresholds and are classified as non-features.  It should be noted that all measured and derived 

quantities for non-features are also retained in the v2 data product.  A comprehensive discussion of so-called “sub-visible” 

PSCs can be found in the paper by Lambert et al. (2016), who show that they often can be detected through gas-phase 

uptake of HNO3 as observed by MLS even though they are not detectable as PSCs by CALIOP. 

 The position of the boundary separating NAT mixtures and enhanced NAT mixtures from ice (labeled RNAT|ice) now is 30 

calculated dynamically according to the total abundances of HNO3 and H2O vapors.  RNAT|ice is based on a parameterization 

of theoretical calculations of R532 for fully developed STS (assumed to be points between Tice and Tice-1 K) over a wide 

range of atmospheric pressures and HNO3 and H2O mixing ratios.  Total HNO3 and H2O abundances are determined on a 
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daily basis as a function of altitude and DMP equivalent latitude based on nearly coincident “cloud-free” Aura MLS data, 

where the CALIOP PSC data themselves are used to filter out MLS data affected by uptake in the cloud particles. Then 

each point with CINS > 1 is assigned a NAT|ice confidence index CINAT|ice = (R532 – RNAT|ice )/uncR.  For points classified as 

ice or wave ice, CINAT|ice > 0.  For NAT mixtures or enhanced NAT mixtures, CINAT|ice < 0. 

3.4 Retrieval of 532-nm Particulate Backscatter 5 

By retrieving the 532-nm particulate backscatter, βp, the observed quantities β’perp and R’532 can be corrected for attenuation 

due to overlying particulate layers (i.e. the “primes” are removed).  This allows for a more robust comparison with the 

theoretical results and any necessary final adjustments in the assigned PSC composition class.  It also enables the development 

of approximate relationships (Section 3.5) relating p to the bulk particle microphysical quantities SAD and VD.  The retrieval 

procedure we have implemented in v2 follows the general CALIOP particulate extinction retrieval approach outlined by Young 10 

and Vaughan (2009).  The CALIOP total attenuated 532-nm backscatter profile, with the correction for molecular and ozone 

attenuation previously applied, can be expressed as follows: 

β’(z) = [βp(z) + βmol(z)] exp[-2(z)(0,z)p] 

where (0,z)p is the particulate optical depth between the lidar (altitude 0) and altitude z, and (z) is a factor accounting for 

multiple scattering.  By definition, 15 

(0,z)p = ׬ p(z)dz’
z

0
 , where σp(z) is the particulate extinction coefficient. 

Making the usual assumption that σp = Sp βp , where Sp = the particulate extinction-to-backscatter (lidar) ratio, leads to an 

equation of the form βp(z) = {βp(z)}, which is solved bin by bin in PSCs layers using an unconstrained top-down Newtonian 

iterative numerical approach as discussed by Young and Vaughan (2009).  The multiple scattering factor (z) is calculated as 

a function of temperature from a spline fit to results from Garnier et al. (2015) for semi-transparent cirrus clouds; for 20 

temperatures <190 K (>240 K) (z) is fixed at 0.9 (0.5).  In the absence of data on SP for PSCs, we assume it is bounded by 

values observed for binary H2SO4-H2O aerosols (50-80 sr; Prata et al. (2017)) as R532 approaches 1, and by values observed 

for cold (-80° C) high-altitude cirrus (14-26 sr; Platt et al. (2011)) at very large R532.  Based on the theoretical results described 

in Section 3.3 for binary H2SO4-H2O and STS droplets, we derived a parameterization by which Sp varies smoothly between 

these limits: 25 

Sp = 16 + 66/R532 – 12/(R532)2 

The minimum value of Sp was set at 16 to ensure that retrievals did not terminate at altitudes above where PSCs were detected 

in the CALIOP Level 1 attenuated backscatter data. 
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3.5 Estimation of Particle SAD and VD  

To estimate SAD and VD using CALIOP data, we followed the methodology applied to stratospheric aerosols by Gobbi (1995), 

in which functional relationships linking βp, SAD, and VD were determined by averaging the scattering properties of a large 

set of stratospheric aerosol size distributions.  There is very little information on the size distributions or actual shapes of non-

spherical NAT or ice PSC particles.  Therefore, we made the simplifying assumption that useful relationships could be based 5 

on the averaged scattering properties of a range of size distributions for liquid spherical H2SO4-H2O and STS particles, the 

characteristics of which are much better constrained. 

As described in Section 3.3, the equilibrium VD for H2SO4-H2O or STS particles can be calculated as a function of temperature 

for given atmospheric pressure and HNO3 and H2O mixing ratios from Carslaw et al (1995).  Assuming a single-mode 

lognormal size distribution with number density Nliq and geometric standard deviation σ, the mode radius and SAD can then 10 

be calculated from VD using standard relationships between lognormal moments (e.g., Heintzenberg, 1994).  With the particle 

size distribution fully specified, βp can be calculated using the database of optical properties for spherical particles compiled 

by Scarchilli et al. (2005).  To explore the sensitivity of the results to size distribution parameters, we performed calculations 

for other values of Nliq (5 and 15 cm-3) and σ (1.3 and 1.8) in addition to our standard conditions of Nliq=10 cm-3, σ =1.6, 50 hPa 

atmospheric pressure, 10 ppbv HNO3, and 5 ppmv H2O.  The results are shown in Figures 5 and 6, along with the 3rd order 15 

polynomial least-squares fits to the two sets of curves.  Note that increases (decreases) in atmospheric pressure, HNO3, or H2O 

do not produce different curves, but shift the results for a given curve to the right (left).  The RSS uncertainty in liquid particle 

SAD due to measurement error and lack of knowledge of the size distribution parameters Nliq and σ is on the order of ±1 (±2.5, 

±5) µm2cm-3 for βp = 10-5 (10-4, 510-4) km-1sr-1.  The corresponding RSS uncertainty in liquid particle VD is on the order of 

±0.05 (±0.15, ±1.0) µm3cm-3 for βp = 10-5 (10-4, 510-4) km-1sr-1. 20 

These liquid particle approximate expressions can be applied to the full suite of CALIOP data, including “sub-visible” PSCs 

as well as background aerosols.  However, there are large uncertainties in the case of NAT mixtures and ice PSCs due to the 

absence of information on NAT or ice particle size and shape.  Figures 7 and 8 show the complex behavior of SAD and VD 

versus βp from the full set of theoretical results for NAT mixtures and ice discussed in Section 3.3 and compares those to the 

liquid particle approximations shown in Figs. 5 and 6.  For a given value of βp, the liquid particle approximation for SAD is 25 

an upper limit for the actual SAD in NAT mixtures and a lower limit for the actual SAD in ice PSCs.  The level of 

over/underestimation of SAD may be as much as a factor of 3.  For a given value of βp, the liquid particle approximation for 

VD is a lower limit for the actual VD in ice PSCs and in most NAT mixtures, the exception being those with small rNAT (< 

~1.5 µm).  The level of underestimation of VD can be as much as a factor of 10 for NAT mixtures and up to a factor of 30 for 

ice PSCs.   30 
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3.6 Illustration of Difference Between v1 and v2 Algorithms 

In this section, we illustrate top-level changes in CALIOP PSC data products between the v1 and v2 algorithms.  Figures 9(a) 

and 9(b) present curtains of the retrieved v2 values of the two optical signals used in PSC detection and composition 

discrimination, R532 and βperp, for the orbit shown in Figure 2, and Figure 9(c) is the resultant v2 PSC composition curtain.  

Spatially-coherent regions of NAT mixtures/enhanced NAT mixtures (yellow/red) and ice (blue) identified along the orbit 5 

track correspond directly to regions of enhancements in both R532 and βperp, while regions of liquid STS (spherical droplets) 

show no enhancements in βperp and are identified solely through enhancements in R532 (i.e. near left edge of orbit curtain).  Also 

notice the mountain wave ice (dark blue) with its distinctive tilted layer structure over the Antarctic Peninsula (75o S, 300o W).   

For comparison, the v1 PSC composition curtain is shown in Figure 9(d).  There is much more ice and much less enhanced 

NAT mixtures in v2 compared with v1, where much of the ice was misclassified as NAT mixtures due to the fixed boundary 10 

separating the two composition classes in v1.  In addition, v2 substantially fills in holes that are present in the v1 image and 

reduces the pixel-to-pixel variation in inferred PSC composition.  

Figure 10 compares v1 and v2 in terms of the total number of PSC observations (180-m vertical by 5-km horizontal pixels) 

for the Antarctic in 2009 at altitudes 4 km or more above the tropopause, as well as the breakdown of those observations by 

PSC composition.  There are about 19% more total observations with v2 due to the less conservative PSC detection thresholds.  15 

In terms of PSC composition, the fractions of STS, NAT mixture, and wave ice observations are similar in v1 and v2, but there 

is a significant increase in v2 relative to v1 in ice PSCs (21.4% versus 10.6%) and a concomitant decrease in enhanced NAT 

mixtures (8.3% versus 18.8%).  This is a result of v2 having a dynamic RNAT|ice boundary, as well as a more restrictive definition 

of enhanced NAT mixtures, i.e. only those NAT mixtures with perp > 210-5 km-1sr-1 and R532 > 2. 

3.7 Consistency of v2 PSC Observations with Expected Thermodynamic Regimes  20 

Similar to the approach used by Lambert et al. (2012), P13, and Lambert and Santee (2017), we have examined the consistency 

of the v2 PSC composition classes with respect to their expected thermodynamic existence regimes through combined analyses 

of the CALIOP and Aura MLS data.  Here, we extend these previous studies to now include the entire 2006-2017 v2 CALIOP 

data record.  To avoid potentially biased MLS HNO3 measurements where the relatively large geometric field-of-view (FOV) 

is only partially filled with PSCs (e.g. see P13 and Lambert and Santee, 2017), the analyses are limited to cases where CALIOP 25 

PSCs cover at least 75% of the Aura MLS FOV (assumed to be 165 km x 2.16 km) and a single CALIOP composition is 

dominant.  Composite histograms of PSC occurrence vs. T −Tice over the 20-22 km altitude range are shown in Figure 11(a) 

and Figure 11(c) for the Arctic (2006-07 to 2016-17) and Antarctic (2006–2017), respectively. Here, T is the ambient 

temperature at the CALIOP observation point determined from the MERRA-2 gridded analyses, and Tice is calculated using 

the Murphy and Koop (2005) relationship with the coincident Aura MLS gas-phase H2O abundance.  Histograms are shown 30 

for the CALIOP STS, NAT mixture (including enhanced NAT mixtures), and ice (including wave ice) composition classes, 

and each histogram is normalized to a maximum value of 1.0.  Figures 11(b) and 11(d) show the same composite histograms 
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transformed to T-Teq space, where Teq is defined as TNAT, TSTS, or Tice, depending on the CALIOP composition classification, 

and is calculated using the Hanson and Mauersberger (1988) (TNAT), Carslaw et al. (1995) (TSTS), and Murphy and Koop (2005) 

(Tice) relationships with the coincident MLS HNO3 and H2O abundances.  Teq for ice PSCs remains the same as in Figures 

11(a) and 11(c) and the ice PSC distributions are identical to those in Figures 11(a) and 11(c).  The STS and NAT mixture 

histograms are restricted to observations with MLS HNO3 values greater than 1 ppbv to avoid the region where the NAT and 5 

STS equilibrium HNO3 uptake curves converge (e.g. see Figure 3 in P13). 

The mode of the ice PSC distribution for both hemispheres is located at a temperature slightly below the frost point with a full-

width-half-maximum of about 1 K. The longer positive tail in the ice PSC distributions is due to warm biased temperatures 

associated with wave ice events that aren’t fully resolved in the MERRA-2 temperature fields.  STS PSCs in both hemispheres 

occur over a relative narrow temperature range centered slightly below the STS equilibrium temperature. The relatively narrow 10 

widths of the ice and STS histograms with modes near Teq are an indication that these particles are near equilibrium, as would 

be expected.  The ice and STS histogram mode peaks occurring below Teq are consistent with a small cold bias in the MERRA-

2 temperature analyses as noted by Lambert et al. (2012) and Lambert and Santee (2017). The NAT mixture distributions are 

broader and roughly bimodal with one mode slightly below the NAT equilibrium temperature and a second more populous 

mode at 3-4 K below NAT equilibrium, which corresponds approximately to the STS equilibrium temperature. As discussed 15 

in P13, this bimodality is likely a consequence of different exposure times of air parcels to temperatures below TNAT. The mode 

near the STS equilibrium temperature represents air parcels with relatively brief exposure to temperatures below TNAT.  These 

parcels contain non-equilibrium liquid-NAT mixtures with a detectable enhancement in βperp, but the uptake of HNO3 is 

dominated by the much more numerous liquid droplets at the lower temperatures. The NAT mixture mode near the NAT 

equilibrium temperature corresponds to parcels that have been exposed to temperatures below TNAT for extended periods of 20 

time, allowing a larger fraction of the gas-phase HNO3 to condense onto the thermodynamically-favored NAT particles and 

bringing the mixture closer to NAT equilibrium. These composite histograms, which incorporate over 11 years of CALIOP 

measurements representing millions of PSC observations, demonstrate behavior consistent with theoretical expectations for 

each composition class, providing confidence that the v2 composition classification scheme is robust.  

4 PSC Climatologies 25 

Applying the v2 detection and composition classification algorithm to the CALIOP V4.10 Lidar Level 1B data from June 2006 

through October 2017, we have created a new PSC reference data record which covers 12 Antarctic PSC seasons (May-

October) and 11 Arctic PSC seasons (December-March).  It is archived as the CALIPSO Lidar Level 2 Polar Stratospheric 

Cloud Mask Version 2.0 (v2) data product and publicly available through the NASA Langley Atmospheric Science Data 

Center (ASDC) (https://eosweb.larc.nasa.gov/project/calipso/lidar_l2_polar_stratospheric_cloud_table). In this section, we 30 

present representative figures drawn from this data record that depict the seasonal and interannual variability of PSC spatial 

coverage in the Antarctic and Arctic, climatological mean geographic patterns of PSC occurrence, and overall differences 
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between the hemispheres.  We also show how Antarctic PSC composition varies climatologically over the season and relate 

climatological zonal mean cross-sections of PSC occurrence to analogous cross-sections of temperature and the PSC 

condensables HNO3 and H2O.  

4.1 Antarctic  

4.1.1 PSC Areal and Spatial Volume Coverage 5 

A depiction of the vortex-wide, seasonal evolution of PSC occurrence is given by a measure of the total areal coverage of 

PSCs over the polar region as a function of altitude and time.  To mitigate the effects of irregular sampling density due to the 

CALIPSO orbit geometry, the daily total PSC areal coverage is estimated as the sum of the occurrence frequency (number of 

PSC detections divided by the total number of observations) in ten equal-area latitude bands spanning the 50°-90° S latitude 

range, multiplied by the area of each band.  This estimate implicitly assumes that the CALIOP observations from the 10 

approximately 15 orbits per day are representative of the PSC coverage within each latitude band.  Note that the highest equal-

area latitude band covers 77.8°-90° S, so CALIOP measurements between 77.8°-82° S are assumed to be representative of the 

entire 77.8°-90° S latitude band.  A similar approach has been used to estimate PSC area statistics by P09 for CALIOP 

observations from 2006-2008 and also by Spang et al. (2017), who found that MIPAS and CALIOP PSC areas from the 2009 

Antarctic PSC season were in excellent agreement in spite of the fundamentally different measurement approaches.   15 

The seasonal evolution of PSC areal coverage during each of the 12 seasons in the CALIOP Antarctic data record is shown in 

Figure 12.  The full altitude range of the PSC data product (8.4 – 30.0 km) is presented with no attempt here to distinguish 

PSCs from upper tropospheric cirrus clouds that are commonly observed below ~12 km throughout the entire season. 

Temperatures low enough for PSC existence typically occur inside the stratospheric polar vortex, which in the case of the 

Antarctic is large, relatively axisymmetric, and generally similar from year-to-year (e.g. Waugh and Randel, 1999).  Hence, it 20 

not surprising that the seasonal evolution of PSC coverage in the Antarctic follows a similar pattern from year-to-year, with 

PSCs first occurring in mid to late May and persisting until early October.  The total areal extent of PSCs typically peaks in 

July and August when the vortex is largest and coldest and then diminishes markedly in September and approaches zero in 

October.  PSCs extend in altitude from near the tropopause up to > 25 km, but there is a downward trend in the altitude of 

maximum areal coverage over time from above 20 km early in the season to near 15 km by September.  This corresponds to a 25 

downward shift in the axis of coldest temperatures as the vortex warms at higher altitudes, as was also noted by Poole and Pitts 

(1994).  An interesting feature seen in most years is the apparent merging of the upper tropospheric and lower stratospheric 

cloud layers in July and August associated with CALIOP observations of deep synoptic-scale clouds extending from the 

troposphere into the stratosphere to altitudes well above 20 km.  These episodic events are likely produced by large-scale 

adiabatic cooling along upwardly displaced isentropic surfaces above upper tropospheric anticyclones (e.g. Teitelbaum and 30 

Sadourny, 1998; Teitelbaum et al., 2001; Kohma and Sato, 2013).  Distinctive tilted cloud layers formed in the cold phases of 

strong orographic gravity waves (e.g. Cariolle et al., 1989; Höpfner et al., 2006; Orr et al., 2015) are also occasionally observed 
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to extend from the troposphere well into the stratosphere, primarily over the Antarctic Peninsula.  Both of these phenomena 

can be seen in the CALIOP orbit curtain shown in Fig. 2.  

Although the general seasonal evolution is similar from year to year, there is a moderate amount of year-to-year variability in 

PSC coverage during the season that is primarily driven by the dynamical processes that control the size, thermal structure, 

and stability of the vortex, as well as the strength and frequency of orographic and upper tropospheric forcing events.  For 5 

instance, 2006 was characterized by an especially large and cold vortex (e.g. WMO, 2007) and showed the largest PSC areas 

observed by CALIOP to date, while in 2010 and 2012 the vortex was relatively warm with concomitantly much smaller PSC 

areas.  The climatological mean seasonal evolution of Antarctic PSC areal coverage compiled for the 2006-2017 period is 

shown in Figure 13.  While it is a reasonable approximation to the seasonal evolution of PSC coverage in any given year, the 

dynamic variability of the vortex and orographic/upper tropospheric forcing can produce significant deviations from this mean 10 

picture.  To better quantify the interannual variability in PSC coverage, we calculated the 12-year mean, standard deviation, 

and range of daily values of PSC spatial volume (daily area coverage integrated over altitude, e.g. see P09).  These PSC spatial 

volumes are shown in Figure 14, with maximum and minimum values color-coded according to the year in which they 

occurred.  To avoid contamination from the underlying cirrus, the volume calculations include only those CALIOP 

observations at altitudes more than 4 km above the reported tropopause.  Most of the maximum values in PSC spatial volume 15 

are from the very cold 2006 season, and many of the minimum values are from the warmer 2010/2012 seasons.  At the peak 

of the season in July, the relative standard deviation in PSC spatial volume is about ±25%.   

The v2 CALIOP PSC data record can also be exploited to differentiate the seasonal evolution of PSC areal coverage by 

composition class.  Figure 15 shows the 12-year mean relative spatial coverage (composition-specific area normalized by total 

PSC area) for (a) STS; (b) NAT mixtures, including enhanced NAT mixtures; and (c) ice, including wave ice.  To provide 20 

additional perspective, Figure 15(d) shows the 12-year mean contour plot of T-TNAT, where again T is the ambient temperature 

from MERRA-2 gridded analyses and TNAT is calculated using the Hanson and Mauersberger (1988) relationship with cloud-

free Aura MLS gas-phase HNO3 and H2O abundances.  The onset of the PSC season in the Antarctic depends on the details of 

the evolving Antarctic polar vortex such as its shape, location, and coldness, which vary significantly from year-to-year.  

Lambert et al. (2016) showed that from 2006-2015, synoptic-scale HNO3 uptake by PSCs was first observed by Aura MLS as 25 

early as May 13 and as late as May 28.  Furthermore, these initial PSCs are often “sub-visible” and only become detectable by 

CALIOP some 1-6 days later.  Thus we chose to avoid the highly variable onset period in terms of presenting a representative 

climatology and restricted our analyses to May 21 and beyond, when PSCs were observed in at least 6 of the 12 Antarctic 

seasons covered by CALIOP.  STS (panel a) is the most prevalent composition above 20 km until mid-June and then again at 

lower altitudes in September and October. The early-season predominance of STS above 20 km corresponds to the region of 30 

largest temperature departures below TNAT in panel (d), which is consistent with an enhanced liquid particle growth regime.  

The predominance of STS late in the season may be an indication that efficient NAT nuclei have been removed through 

sedimentation of PSC particles during the winter.  NAT mixtures (panel b) are by far the dominant composition observed 
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below 20 km in May and early June, comprising >80 % of the total observed PSC area below 17 km, and are also the prevailing 

composition above 20 km during July through mid-September.  The early season maximum of NAT mixtures below 17 km 

corresponds to a region of temperatures near or just below TNAT where liquid particle growth would not be expected. The onset 

of ice PSCs (panel c) is delayed 3-4 weeks relative to STS and NAT mixtures, typically occurring around mid-June as 

temperatures fall below the frost point.  The areal extent of ice PSCs is largest in July and August primarily at altitudes below 5 

20 km, but ice is rarely the predominant composition.  The 12-year mean relative PSC composition breakdown shown in Figure 

15 is remarkably similar to the 2006-2008 compilation shown by P09, highlighting the robustness of these results.  

4.1.2  Zonal Mean and Geographical Distributions of PSC Occurrence  

The PSC areal coverage and spatial volume plots capture quite well the seasonal evolution and interannual variability of PSCs 

from a vortex-wide point of view, but offer no information on the actual geographical patterns of occurrence. To gain this 10 

insight, we now examine monthly zonal mean cross sections and polar maps of PSC occurrence frequency.  Latitude/altitude 

cross sections of monthly zonal mean PSC occurrence frequency compiled from the 12-year CALIOP Antarctic data record 

are shown in Figure 16 (top row) for the four primary Antarctic PSC months of June-September.  To indicate potential PSC 

existence regimes, we show corresponding cross sections of zonal mean cloud-free MLS HNO3 (second row) and H2O (third 

row), MERRA-2 T (fourth row), and T-TNAT (bottom row).  For reference, the mean location of the edge of the vortex based 15 

on the Nash et al. (1996) criteria and dynamical tropopause altitude from the MLS DMPs are indicated on the panels by the 

black dashed and dotted lines, respectively. In June, PSCs are observed at latitudes poleward of about 65° S from the near the 

tropopause up to about 26 km in altitude, with maximum mean occurrence frequency > 60% near 18 km at the highest latitudes.  

PSC occurrence peaks during July and August, with the region of highest occurrence frequency expanding in both altitude and 

latitude in response to the continued cooling of the polar vortex.  There is also a hint of a double peak in occurrence frequency 20 

with altitude during these months with the dominant peak near 15 km and a secondary peak above 20 km.  PSC occurrence 

declines significantly in both magnitude and spatial extent in September with only a small region of occurrence frequency > 

40% at 14 km near 82° S and overall occurrence restricted to altitudes below 23 km as the vortex warms at higher altitudes.  

As was observed in the vortex-wide PSC areal coverage plots, there is a systematic shift downward in the altitude of maximum 

zonal mean PSC occurrence from near 18-20 km in June to below 15 km in September.   Upper tropospheric cirrus cloud 25 

occurrence frequency is > 10-15% throughout the season at all latitudes.  

Although these conventional latitude/altitude zonal means are correct in a statistical sense, the Eulerian view has the 

disadvantage of possibly averaging together air masses from different, physically distinct regions of the vortex or even from 

inside and outside of the vortex.  Consequently, the latitude/altitude zonal means are difficult to interpret in the context of 

meteorological and microphysical processes within the vortex that control PSC occurrence.  This is especially true when the 30 

vortex is elongated and/or not centered over the South Pole.  An alternative approach is to average data in the more physically 

based quasi-Lagrangian coordinate system of equivalent latitude (EqLat) versus potential temperature ().  This coordinate 
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system roughly captures the motion of air parcel ensembles and is widely used by the stratospheric chemistry and dynamics 

community in studies of polar processes (e.g., Butchart and Remsberg, 1986; Manney et al., 1999).    

Figure 17 shows the EqLat/ cross-sectional representations of the 12-year average, monthly zonal mean Antarctic PSC 

occurrence frequency, cloud-free MLS HNO3 and H2O, MERRA-2 T, and T-TNAT.  During most months, the center of the polar 

vortex is shifted off the pole so that the conventional latitude/altitude cross-sectional monthly means (Figure 16) blur the sharp 5 

gradients in HNO3 and H2O between the interior and “collar” regions (e.g. Wespes et al., 2009) of the vortex that are much 

more clearly captured in the EqLat/ cross-sections (Figure 17).  Gas-phase HNO3 and H2O are severely depleted by July in 

the interior of the vortex at EqLat < −75° between 400-500 K potential temperature.  Although there is relatively cold air 

present in this region, the lack of condensables sufficiently lowers the particle thermodynamic existence temperatures (e.g. 

TNAT) to near or below ambient temperatures, limiting PSC existence.  Consequently, the highest PSC frequency more typically 10 

occurs at equivalent latitudes closer to the vortex edge where there is an optimal combination of sufficient condensables and 

cold temperatures, which corresponds reasonably well with the minima in the T-TNAT distributions (bottom row of Figure 16). 

The reason that a double-peak vertical structure in PSC occurrence appears at high latitudes in July and August in the 

latitude/altitude cross sections (Fig. 16) is much clearer in the EqLat/ coordinate system, which show a relative minimum in 

PSC occurrence at =450 K (~18 km) corresponding to the layer of depleted condensables. 15 

PSC occurrence is not typically zonally symmetric in either geographic or equivalent latitude coordinate systems, but instead 

exhibits distinct longitudinal patterns. To illustrate these preferred patterns of PSC occurrence, 12-year average, monthly mean 

polar maps of Antarctic PSC frequency at  = 500 K (~20 km altitude) are shown in Figure 18.  The top row shows the 

occurrence frequency for all PSCs, while the subsequent rows display the occurrence frequencies of STS, NAT mixtures, and 

ice, respectively.  Overlaid in the figure are the mean location of the edge of the vortex (black line) and the boundaries of the 20 

regions where the mean temperature is below TNAT (solid red line) and below Tice (dashed black line).  In general, PSC 

occurrence is roughly bounded by the region where mean temperature is below TNAT and increases poleward with the highest 

occurrence frequencies (>60%) generally located within the region of T<Tice at the highest latitudes. The contours of PSC 

occurrence frequency and cold pool are not symmetric about the pole, but instead pushed slightly off the pole towards the 

Greenwich Meridian (GM) longitude quadrant. This zonal asymmetry in PSC occurrence is especially pronounced in July-25 

September with the maximum occurrence frequency at 0o-90o W longitude near the base of the Antarctic Peninsula.  The 

enhancement in PSC occurrence at longitudes near the Antarctic Peninsula is due to frequent mountain wave activity in this 

region (Alexander et al., 2011; Alexander et al., 2013; Hoffman et al., 2017) and the large-scale upper tropospheric forcing 

events which are more frequent at these longitudes (Kohma and Sato, 2013).   

The mean geographical distributions of STS, NAT mixtures, and ice PSCs at =500 K (Fig. 18, rows 2-4) also exhibit preferred 30 

occurrence patterns.  STS-only observations are widespread during June at this level, but more limited afterwards with 

essentially no STS in the deep interior of the vortex during July-August and completely missing during September.  NAT 
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mixtures, on the other hand, are widespread over much of the vortex at this level, especially during July and August.  The 

ubiquitous NAT mixtures and concomitant absence of STS-only observations may be an indication that air parcels well inside 

the vortex have been exposed to temperatures below TNAT for sufficiently long periods of time to allow the condensed HNO3 

to migrate from the STS droplets to the more thermodynamically-favored NAT particles.  The ring of increased occurrence of 

NAT mixtures in July over East Antarctica between 70°-75° S latitude is consistent with the so-called NAT belt that evolves 5 

downstream of ice PSCs that frequently occur over the Antarctic Peninsula (e.g. Höpfner et al., 2006).  Ice PSC occurrence 

aligns reasonably well with the region of mean temperatures below Tice that occurs over the interior of the vortex at latitudes 

generally poleward of 70° S with a distinct maximum in July and August near the base of the Antarctic Peninsula arising from 

the frequent mountain wave and upper-tropospheric forcing events in this region.      

4.2 Arctic 10 

The more irregular underlying surface topography in the Northern Hemisphere leads to stronger upward-propagating wave 

activity than in the Southern Hemisphere, causing a weaker and more distorted Arctic vortex compared to the Antarctic (e.g. 

Waugh et al., 2017).  As a result, the Arctic polar vortex is warmer and exhibits greater temporal variability than its Antarctic 

counterpart, including sudden stratospheric warmings, which can severely disrupt or even completely break down the vortex 

in mid-winter (Charlton and Polvani, 2007).  Not surprisingly then, Arctic PSC occurrence varies significantly from year to 15 

year as is illustrated in Figure 19, which shows the daily mean PSC areal coverage during each of the 11 Arctic seasons in the 

CALIOP data record.  For instance, the 2010-11 season was marked by persistent periods of PSCs from December-March that 

set the stage for record ozone depletion over the Arctic (Manney et al., 2011b). During the 2015-16 season, CALIOP observed 

the largest areal coverage of PSCs over the Arctic to date, including areas of synoptic ice PSCs, which have only been observed 

by CALIOP in the Arctic in only one other season (2009-10).  In contrast to these remarkable Arctic PSC seasons, the warm 20 

2014-15 winter was almost devoid of PSCs.  This dramatic year-to-year variability in Arctic PSC coverage is further quantified 

in Figure 20 which depicts the time series of 11-year mean daily PSC spatial volumes over the Arctic along with the standard 

deviations, maxima, and minima.  All the maxima in January correspond to the anomalous 2015-16 season while the majority 

of the maxima in February and March correspond to the 2010-11 season.  The year-to-year variability in the PSC spatial 

volume in the Arctic is much larger than in the Antarctic, with the relative standard deviations exceeding 100% for most days.  25 

In other words, there is not a typical year in the Arctic, with each year being unique.  Therefore, a multi-season mean 

representation of Arctic PSC occurrence would not be very meaningful as guidance for including PSCs in a model.  

In spite of the high interannual variability in PSC areal coverage, the geographical pattern of PSC occurrence in the Arctic is 

quite regular from year to year, with PSCs primarily confined to longitudes from about 60o W to 120o E as illustrated in the 

11-year average, monthly mean Arctic PSC occurrence frequency maps for December and January shown in Figure 21.  This 30 

region corresponds to the climatologically favored location of the Arctic vortex in recent decades (e.g. Zhang et al., 2016) 

which has been influenced by enhanced zonal wavenumber 1 activity, pushing the vortex off the North Pole towards Eurasia. 
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4.3 Differences between Antarctic and Arctic 

As discussed in Sections 4.1 and 4.2, the Antarctic polar vortex is a much more conducive environment for PSC existence than 

its Arctic counterpart.  The Antarctic PSC season is longer and more regular with PSCs present every year from mid-May to 

early October, while in the Arctic, PSC occurrence is possible from December-March but not guaranteed in any of these 

months.  The contrast between CALIOP PSC observations in the two hemispheres can be seen in Figure 22, which shows the 5 

total number of observations over the entire 2006-2017 data record (12 Antarctic seasons and 11 Arctic seasons), as well as 

the average, minimum, and maximum percentage of observations by composition class. On average, about 14 times more 

PSCs were observed during a season in the Antarctic than in the Arctic.  The largest differences in composition are in ice, 

which comprised nearly 25% of Antarctic PSCs compared to less than 5% in the Arctic (a result of the much colder Southern 

vortex) and in NAT mixtures, which comprised nearly 60% of Arctic PSCs, but only about 40% of Antarctic PSCs.  The 10 

percentages of STS, enhanced NAT mixtures, and wave ice are not vastly different between the two hemispheres.   

5 Particle Surface Area Density and Volume Density 

As described in Section 3.5, estimates of the bulk particle microphysical quantities SAD and VD are included in the new 

CALIOP v2 PSC data record.  The estimates assume liquid particles (binary H2SO4-H2O or STS) only and thus have large 

uncertainties when NAT mixtures or ice are present.  Nonetheless, they represent the first long-term, vortex-wide 15 

observational-based record of SAD and VD and can be used to compare CALIOP stratospheric data with in situ particle 

measurements and to test parameterizations of the chemical and radiative effects of particles in current and future theoretical 

models.  Since the SAD and VD estimates cover the full range of CALIOP data, including “sub-visible” PSCs as well as 

background aerosols, they may prove especially valuable in studies of the role of PSCs relative to that of cold background 

aerosols in early-season chlorine activation (e.g., Wegner et al., 2016; Drdla and Müller, 2012).   20 

The climatological, 12-year mean depiction of the temporal evolution of vortex-averaged SAD over the Antarctic is shown in 

the top panel in Figure 23.  The vortex-mean SAD begins to rise in mid-May, which may be an indication of binary aerosol 

deliquescence as the vortex cools and/or the initial onset of PSCs.  SAD increases more significantly in June as PSCs become 

widespread below 25 km.  The maximum SAD is associated with ice PSCs that are most prevalent in July and August below 

20 km.  Twelve-year average, monthly mean polar maps of SAD at 18 km altitude are shown in the bottom row of Figure 23.  25 

Since ice PSCs produce the largest enhancements in SAD, the mean geographical distribution of SAD closely mirrors the 

highly zonally asymmetric pattern of ice PSC occurrence, with largest values in the 90o W to 0o longitude sector where ice 

PSC occurrence is most prevalent, especially in July-September.  The spatial and temporal patterns in estimated VD (not 

shown) are very similar to those in estimated SAD, as expected.  
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6 Comparison to SAM II Solar Occultation PSC Record 

To investigate the possibility of longer-term trends, we have compared the CALIOP Antarctic data record with the SAM II 

(Stratospheric Aerosol Measurement II) solar occultation Antarctic polar stratospheric aerosol and cloud data record from the 

years 1979-1989 (Poole and Pitts, 1994). To account for differences caused by dissimilarities in sampling, we have produced 

a subset of CALIOP measurements matched to the nominal SAM II solar occultation sampling pattern where measurement 5 

latitude varied slowly over the season from 64° S at the solstices to 80° S at the equinoxes.  In addition, we degraded the 

resolution of the CALIOP PSC products to roughly match the large sampling volume of SAM II, which was approximately 

1 km in the vertical by several hundred km in the horizontal.  For comparison, we calculated 11-year mean PSC occurrence 

frequencies (SAM II: 1979-1989, CALIOP: 2006-2016) over 10-day periods from May through October in 1-km bins over the 

altitude range from the tropopause + 2 km to 30 km.  Then, we integrated the occurrence frequencies over altitude to produce 10 

column-integrated occurrence frequencies.  Figure 24 shows the multi-year mean time series for CALIOP (a) and SAM II (b), 

along with standard deviations and the maximum and minimum values observed in any season over the 11-year periods.  Note 

that the solar occultation sampling latitude tracks near the terminator, and after September there are no night-time CALIOP 

measurements at the SAM II sampling latitude.  Overall, the magnitude and variability of the CALIOP and SAM II integrated 

occurrence frequencies are similar, indicating that there have not been any significant changes in PSC occurrence since the 15 

SAM II era.  However, note that the SAM II occurrence frequencies are higher than those of CALIOP early in the PSC season.  

This may be a reflection of the greater sensitivity of the limb-viewing occultation measurements to the onset of PSCs when 

liquid droplets first began to deliquesce and/or when low number density NAT particles form that are below the CALIOP 

detection thresholds.  This is consistent with the findings of Lambert et al. (2016) that in a number of years there were signatures 

of uptake of gas-phase HNO3 by PSC particles up to a week before PSCs were first detected by CALIOP.       20 

7 Summary and Discussion 

Measurements from CALIOP on the CALIPSO satellite have greatly expanded the PSC observational data record with now 

over 11 years of observations to date.  The spaceborne lidar profiles the polar stratosphere with unprecedented spatial 

(5-km horizontal x 180-m vertical) and temporal (~15 orbits/day) resolution and its dual-polarization capability allows 

classification of PSCs according to composition.  A new v2 CALIOP PSC algorithm has been developed that corrects a number 25 

of known deficiencies in previous versions, leading to significantly improved PSC composition data products.  Major v2 

enhancements include dynamic adjustment of composition boundaries to account for effects of denitrification and dehydration, 

direct use of measurement uncertainties, addition of composition confidence indices, and retrieval of particulate backscatter, 

which enables simplified estimates of particulate SAD and VD.  Top-level comparisons between v1 and v2 data products 

indicate that the improved discrimination between ice and NAT mixtures leads to roughly twice as much ice identified in v2 30 

relative to v1, coming primarily at the expense of enhanced NAT mixtures.  Composite multi-season histograms of v2 PSC 

observations in each composition class versus T-Teq were shown to conform to their expected existence regimes, with narrow 
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distributions near Teq for STS and ice, which are thought to be near thermodynamic equilibrium, and a broader bimodal 

distribution of NAT mixtures due to the frequent non-equilibrium growth of NAT particles.  These results are consistent with 

findings of P13 for the 2006-2009 period, underscoring the robustness of the v2 composition discrimination approach.   

Utilizing the v2 algorithm, we have produced a state-of-the-art CALIOP PSC reference data record that spans the June 2006-

October 2017 time period with PSC information compiled along each of the ~15 CALIPSO orbits per day.  Nearly coincident 5 

Aura MLS measurements of HNO3 and H2O, the primary PSC condensables, along with vortex information from the Aura 

MLS DMPs have been mapped to the CALIOP PSC along-orbit grid and included in the PSC data products to facilitate their 

use in the analyses.  In combination, this data record represents the most comprehensive, high resolution PSC database in 

existence and establishes the foundation for the compilation of a robust climatology of PSC occurrence and particle 

characteristics. The CALIPSO Lidar Level 2 Polar Stratospheric Cloud Mask Version 2.0 (v2) data product is archived at the 10 

NASA Langley Science Data Center and available publically (https://eosweb.larc.nasa.gov/project/calipso/lidar_l2_ 

polar_stratospheric_cloud_table).   

From the 11+ year CALIOP PSC reference data record, we have compiled a comprehensive climatology of PSC occurrence 

and composition for both the Antarctic and Arctic.  The seasonal evolution of Antarctic PSC areal coverage corresponds closely 

to the evolution of the stratospheric polar vortex which is generally similar from year to year in the Antarctic and hence is 15 

captured reasonably well by the multi-season mean depiction. However, year-to-year variability in vortex shape, size and 

thermal structure leads to moderate variability in PSC coverage, with about 25% relative standard deviation in PSC spatial 

volume at the peak of the season in July and August.  The relative breakdown of areal coverage by composition shows that 

STS is the predominant particle composition early in the season above 20 km where temperatures are optimal for liquid particle 

growth and again late in the season when efficient NAT nuclei may have been depleted.  NAT mixtures are predominant in 20 

the slightly warmer (T  TNAT) environment below 16 km in late May and June, and also above 17 km from July through mid-

September when air parcels have long exposures to T < TNAT, especially in the interior of the vortex, leading to the 

thermodynamically-favored NAT at the expense of STS. Monthly zonal mean cross sections show the multi-season average 

patterns of PSC occurrence in geographic latitude/altitude and also equivalent latitude/potential temperature coordinates.  The 

vortex-centered EqLat/ coordinates better capture processes controlling PSC existence such as gradients in condensable 25 

abundances that more are more closely aligned with the structure of the vortex.  PSC occurrence is limited deep within the 

interior of the vortex at high equivalent latitudes due to severe denitrification and dehydration.  The maximum in PSC 

occurrence frequency is typically at EqLats between 65o-75o S, closer to the collar region of higher HNO3 near the edge of the 

vortex.  

Geographical patterns of Antarctic PSC occurrence were investigated through examination of polar (latitude-longitude) maps 30 

of multi-season, monthly mean PSC occurrence on constant potential temperature surfaces.  Overall, there is a maximum in 

Antarctic PSC occurrence between 90oW and 0o longitude, consistent with the preferential region for forcing by mountain 
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waves and upper-tropospheric anticyclones.  CALIOP observations of deep cloud systems that extend from the troposphere 

well into the stratosphere up to 20-25 km are indicative of the important role of large-scale upper tropospheric forcing in PSC 

formation.  The particle characteristics within these deep cloud systems, particularly in the transition region near the tropopause 

are not well understood and warrant further investigation.   

Specific compositions also exhibit preferred geographical patterns of occurrence.  STS occurrence is typically very limited in 5 

the interior of the vortex, while NAT mixtures are abundant throughout the vortex.  The ubiquitous NAT mixtures and 

concomitant absence of STS-only observations is likely an indication that air parcels well inside the vortex have been exposed 

to temperatures below TNAT for sufficiently long periods of time to allow the condensed HNO3 to migrate from STS droplets 

to the more thermodynamically-favored NAT particles.  A NAT mixture belt is also seen in the multi-year means over East 

Antarctica, consistent with MIPAS observations (Höpfner et al., 2006).  The mean pattern of ice PSC occurrence is dominated 10 

by mountain wave forcing, with a maximum in the 90oW-0o longitude quadrant near the Antarctic Peninsula.    

In contrast to the Antarctic, Arctic PSC occurrence is highly variable from year-to-year due to the more disturbed Arctic vortex 

that is prone to sudden stratospheric warmings.   As such, the evolution of an Arctic PSC season doesn’t follow a climatological 

mean pattern and instead each PSC season is distinctly different.  For instance, PSC areas during the 2010-11 and 2015-16 

Arctic seasons were the highest observed during the CALIOP lifetime to date, while the 2014-15 season was almost devoid of 15 

PSCs.  As a result, the relative standard deviation in Arctic PSC spatial volume is greater than 100% throughout most of the 

season.  In spite of the high variability in Arctic PSC occurrence, when PSCs occur they are typically found between 60oW 

and 90oE longitude, consistent with the preferential location of the Arctic vortex during the last decade.  The larger, colder, 

and more stable Antarctic vortex is much more conducive for PSC formation than the Arctic vortex, leading to about a factor 

of 14 more PSC observations on average in the Antarctic than Arctic during the CALIOP era.  The most compelling difference 20 

in observed composition is in ice, which comprises 24% of PSC observations in the Antarctic on average, but only 4% in the 

Arctic due to the inherently warmer conditions.  

Estimates of the bulk particle microphysical quantities SAD and VD are included in the new CALIOP v2 PSC data record.  

The estimates assume liquid particles (binary H2SO4-H2O or STS) only and thus have large uncertainties when NAT mixtures 

or ice are present.  Nonetheless, they represent the first long-term, vortex-wide observational-based record of SAD and VD 25 

and can be used to compare CALIOP stratospheric data with in situ particle measurements and to test parameterizations of the 

chemical and radiative effects of particles in current and future theoretical models.  A climatology of the seasonal evolution of 

vortex-averaged SAD was presented, showing an initial increase in May associated with particle growth as the vortex cools, 

possibly from deliquescence of binary aerosol, and then a more substantial increase as PSCs become widespread in June.  

Maximum SAD occurs in July and August below 20 km when ice PSCs are most prevalent.  Multi-season average, monthly 30 

mean polar maps of SAD exhibit a zonally asymmetric pattern that mimics ice PSC occurrence, with maxima occurring near 

the mountainous Antarctic Peninsula where orography leads to enhanced ice cloud formation.  
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Finally, to investigate potential long-term (multi-decadal) trends in PSC occurrence we compared the CALIOP Antarctic PSC 

data record with the historic SAM II solar occultation data record (1979-1989) that was the basis for the first satellite-based 

PSC climatology.  To facilitate the comparison, the CALIOP data record was subsetted to mimic the sampling pattern and 

coarser resolution of SAM II, which made 15 observations per day at a latitude that varied slowly with season.  We found that 

time series of SAM II and occultation-like CALIOP column integrated Antarctic PSC sighting frequencies were quite similar, 5 

suggesting no obvious long-term trend in PSC occurrence. 

8. Data availability 

CALIPSO/CALIOP L1B: Winker, D. (2016), CALIPSO LID L1 Standard HDF File - Version 4.10, NASA Langley Research 

Center Atmospheric Science Data Center DAAC, Last access December 2017, https://doi.org/10.5067/caliop/calipso/lid_l1-

standard-v4-10. 10 

 

CALIPSO/CALIOP L2 PSC Mask: CALIPSO Science Team (2015), CALIPSO/CALIOP Level 2, Polar Stratospheric Cloud 

Data, version 1.00, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC), Last access October 2017, 

https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_PSCMask-Prov-V1-00_L2-001.00. 

 15 

Aura MLS HNO3 data:  EOS MLS Science Team (2017), MLS/Aura Near-Real-Time L2 Nitric Acid (HNO3) Mixing Ratio 

V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Last access October 

2017, https://disc.gsfc.nasa.gov/datacollection/ML2HNO3_NRT_004.html. 

 

Aura MLS H2O data:  EOS MLS Science Team (2017);, MLS/Aura Near-Real-Time L2 Water Vapor (H2O) Mixing Ratio 20 

V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Last access October 

2017, https://disc.gsfc.nasa.gov/datacollection/ML2H2O_NRT_004.html. 

 

Aura MLS Derived Meteorological Products: Manney et al. (2007); Manney et al. (2011a), Last access December 2017 at 

https://mls.jpl.nasa.gov/dmp/. 25 
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Figure 1: CALIPSO orbital coverage over the polar region of the Southern Hemisphere on 17 July 2008.  Blue (red) lines 
depict nighttime (daytime) orbit segments.  The CALIOP curtain along the orbit highlighted in yellow is shown in Fig. 2.   
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Figure 2: Orbital curtain of CALIOP 532-nm total attenuated backscatter coefficient (km-1sr-1) along the single orbit highlighted in yellow in 
Fig. 1. 
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Figure 3.  Theoretical optical calculations for non-equilibrium liquid-NAT and liquid-ice mixtures, illustrating PSC v1 composition 
classification scheme.  Points are color-coded by NAT or ice number density, and symbol sizes are proportional to NAT or ice 
volume-equivalent radii. 
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Figure 4.  Theoretical optical calculations for non-equilibrium liquid-NAT and liquid-ice mixtures, illustrating the v2 PSC 
composition classification scheme. 
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Figure 5.  Theoretical particulate surface area density (SAD) vs. βp for various combinations of liquid particle number 

density Nliq and lognormal geometric standard deviation σ, along with the 3rd order polynomial least-squares fit. 
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Figure 6.   Theoretical volume density (VD) vs. βp for various combinations of liquid particle number density Nliq and 
lognormal geometric standard deviation σ, along with the 3rd order polynomial least-squares fit.  
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Figure 7. Theoretical particulate surface area density (SAD) vs. βp from the full suite of results for NAT mixtures and 
ice, compared with the liquid particle approximation. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-234
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 12 March 2018
c© Author(s) 2018. CC BY 4.0 License.



38 
 

 

 

 

 

 

  
Figure 8.   Theoretical particulate volume density (VD) vs. βp from the full suite of results for NAT mixtures and ice, 
compared with the liquid particle approximation. 
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Figure 9:  Curtains of CALIOP (a) R532, (b) perp, (c) v2 PSC composition, and (d) v1 PSC composition along the orbit track on 17 July 
2008 highlighted in Fig.1.   
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Figure 10.  Comparison between v1 and v2 CALIOP PSC observations during the 2009 Antarctic winter and their 
breakdown by composition classification. 
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Figure 11.  Histograms of CALIOP v2 PSC observations at 21 km from 11 Arctic and 1Antarctic winters as a function of (a, c) 
T-Tice and (b, d) T-Teq by composition: STS (light blue), NAT mixtures (red), and ice (dark blue).   
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Figure 11.  Histograms of CALIOP v2 PSC observations at 21 km from 11 Arctic and 12 Antarctic winters as a function of (a, c) T-Tice 
and (b, d) T-Teq by composition: STS (light blue), NAT mixtures (red), and ice (dark blue).   

 

Figure 12.  Time series of total PSC areal coverage over the polar region as a function of altitude for each of the 12 Antarctic winters in 
the CALIOP v2 data record.   
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Figure 13.  Twelve-year mean daily PSC areal coverage over the Antarctic. 
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Figure 14.  Time series of the 12-year mean, standard deviation, and range of daily values of Antarctic PSC spatial volume 
(daily areal coverage integrated over altitude).  The daily maximum and minimum values are color-coded according to the 
year in which they occurred.   
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Figure 15.  Twelve-year mean relative spatial coverage (composition-specific area normalized by total PSC area) for (a) STS; (b) NAT 
mixtures, including enhanced NAT mixtures; and (c) ice, including wave ice.  For additional perspective, (d) shows 12-year mean 
distribution of T-TNAT.  
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Figure 16.  Latitude/altitude cross sections of 12-year average, monthly zonal mean (top row) Antarctic PSC occurrence frequency, 
(second row) cloud-free MLS HNO3, (third row) cloud-free MLS H2O, (fourth row) MERRA-2 temperature, and (fifth row) T-TNAT.    
For reference, the mean location of the vortex edge (heavy dashed line) and dynamic tropopause height (dotted line) are indicated in the 
panels. 
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Figure 17. Equivalent latitude/potential temperature cross sections of 12-year average, monthly zonal mean (top row) Antarctic PSC 
occurrence frequency, (second row) cloud-free MLS HNO3, (third row) cloud-free MLS H2O, (fourth row) MERRA-2 temperature, and 
(fifth row) T-TNAT.  For reference, the mean location of the vortex edge (heavy dashed line) is indicated in the panels. 
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Figure 18.  Twelve-year average, monthly mean polar maps of Antarctic PSC occurrence frequency at  = 500 K (~20 km).  The top row 
shows the occurrence frequency for all PSCs, while the subsequent rows display the occurrence frequencies of STS, NAT mixtures, and 
ice, respectively.  Overlaid in the panels are the mean location of the edge of the vortex (black line) and the boundaries of the regions 
where the mean temperature is below TNAT (solid red line) and below Tice (dashed black line).  Light gray regions indicate latitudes not 
sampled by CALIOP. 
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Figure 19.  Daily PSC areal coverage as a function of altitude for each of the 11 Arctic winters in the CALIOP v2 data record.  Note the 
change in color scale compared with Fig. 12.  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-234
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 12 March 2018
c© Author(s) 2018. CC BY 4.0 License.



50 
 

 

 

  

            

 

Figure 20. Time series of the 11-year mean, standard deviation, and range of daily values of Arctic PSC spatial volume 
(daily areal coverage integrated over altitude).  The daily maximum and minimum values are color-coded according to 
the year in which they occurred.    

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-234
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 12 March 2018
c© Author(s) 2018. CC BY 4.0 License.



51 
 

  

 

 

Figure 21.  Eleven-year average, monthly mean polar maps of Arctic PSC occurrence frequency at  = 500 K 
(~20 km).  Light gray regions indicate latitudes not sampled by CALIOP. 
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Figure 22.  Composition breakdown of PSCs observed by CALIOP in the Antarctic and Arctic during 2006–2017.  The percentages 
are averages over the 12 Antarctic and 11 Arctic seasons in the data record, and the minimum and maximum percentages in any one 
season are indicated by the numbers in brackets. 
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Figure 23.  (Top): Twelve-year mean seasonal evolution of Antarctic vortex-averaged SAD.  (Bottom): Twelve-year average, monthly 
mean polar maps of SAD over the Antarctic at 18 km for June-September.   

2006-2017 
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Figure 24.  Eleven-year mean time series of 10-day averaged, vertically-integrated Antarctic PSC occurrence 
frequency for (a) CALIOP (2006-2016) degraded to solar occultation sampling and (b) SAM II (1979-1989).  
Individual lines represent mean and standard deviation (black), maximum (red), and minimum (green) values 
observed in any one year. 
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